
DeepLTL: Learning to Efficiently Satisfy Complex
LTL Specifications for Multi-Task RL

Mathias Jackermeier, Alessandro Abate

ICLR 2025, Singapore

Instruction-following RL agents

at

Instruction

st

Instruction-following RL agents

at

Instruction

st

Instruction-following RL agents

Natural language:
✅ Intuitive
❌ Ambiguous
❌ Difficult to assess

Instruction

Instruction-following RL agents

Formal specifications:
✅ Precise
✅ Easy to verify
✅ Explicit structure
❌ Difficult to formulate (?)

Instruction

Instruction-following RL agents

Formal specifications:
✅ Precise
✅ Easy to verify
✅ Explicit structure
❌ Difficult to formulate (?)

Well suited when correctness is crucial, e.g.
safety-critical settings

Instruction

Linear temporal logic (LTL)

Example specification:

Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region,

Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region, and

Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region, and
 always,

Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region, and
 always, if you visit green you eventually have to go to blue.”

Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region, and
 always, if you visit green you eventually have to go to blue.”

Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region, and
 always, if you visit green you eventually have to go to blue.”

✅ Compositional Temporally
extended

Infinite
horizon

Safety
constraints✅ ✅ ✅

How can we train a multi-task policy to zero-shot
execute arbitrary LTL specifications?

From LTL specifications to automata

Any LTL specification can be converted to an equivalent (Büchi) automaton:

Accepting state

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

Product MDP

From single-task to multi-task

In a multi-task setting, we do not know the automaton beforehand

In a multi-task setting, we do not know the automaton beforehand

From single-task to multi-task

In a multi-task setting, we do not know the automaton beforehand

From single-task to multi-task

What is a general representation of the automaton state that can be used to
condition the policy?

From single-task to multi-task

In a multi-task setting, we do not know the automaton beforehand

What is a general representation of the automaton state that can be used to
condition the policy?

Reach-avoid sequences

Reach-avoid sequences

Reach-avoid sequences

Reach-avoid sequences

Reach-avoid sequences

Reach-avoid sequences

Reach-avoid sequences

Reach:

Avoid:

Training a general policy

We use goal-conditioned RL to train a general policy:

Training a general policy

We use goal-conditioned RL to train a general policy:

✅ ❌

Training a general policy

✅ ❌

We use goal-conditioned RL to train a general policy:

Training a general policy

✅ ❌

We use goal-conditioned RL to train a general policy:

Training a general policy

✅ ❌

We use goal-conditioned RL to train a general policy:

Model architecture

Model architecture

Deep Sets

Model architecture

Deep Sets

Model architecture

Deep Sets

RNN

Model architecture

Deep Sets

RNN

Model architecture

Deep Sets

RNN

Model architecture

Deep Sets

RNN

Model architecture

Deep Sets

RNN

Action

Test-time policy execution

Test-time policy execution

Test-time policy execution

Test-time policy execution

Test-time policy execution

Test-time policy execution

Test-time policy execution

st

Test-time policy execution

st

Discussion & Results

Discussion

Infinite-horizon
tasks Optimality Safety

Results

Further resources

Website: deep-ltl.github.io

arXiv: arxiv.org/abs/2410.04631

GitHub: mathiasj33/deep-ltl

💻 mathias-jackermeier.me

✉ mathias.jackermeier
 @cs.ox.ac.uk

 mathiasj33

 @m_jackermeier

https://deep-ltl.github.io
https://arxiv.org/abs/2410.04631
https://github.com/mathiasj33/deep-ltl

