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Natural language:
✅ Intuitive
❌ Ambiguous
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Instruction-following RL agents

Formal specifications:
✅ Precise
✅ Easy to verify
✅ Explicit structure 
❌ Difficult to formulate (?)

Well suited when correctness is crucial, e.g. 
safety-critical settings

Instruction
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Linear temporal logic (LTL)

Example specification:

“Go to the purple zone while avoiding the yellow region, and
 always, if you visit green you eventually have to go to blue.” 

✅ Compositional Temporally
extended

Infinite
horizon

Safety
constraints✅ ✅ ✅



How can we train a multi-task policy to zero-shot 
execute arbitrary LTL specifications?



From LTL specifications to automata

Any LTL specification can be converted to an equivalent (Büchi) automaton:

Accepting state
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Reach-avoid sequences

Reach:

Avoid:



Training a general policy

We use goal-conditioned RL to train a general policy:



Training a general policy

We use goal-conditioned RL to train a general policy:

✅    ❌



Training a general policy

✅    ❌

We use goal-conditioned RL to train a general policy:



Training a general policy

✅    ❌

We use goal-conditioned RL to train a general policy:



Training a general policy

✅    ❌

We use goal-conditioned RL to train a general policy:



Model architecture



Model architecture

Deep Sets



Model architecture

Deep Sets



Model architecture

Deep Sets

RNN



Model architecture

Deep Sets

RNN



Model architecture

Deep Sets

RNN



Model architecture

Deep Sets

RNN



Model architecture

Deep Sets

RNN

Action
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Discussion

Infinite-horizon
tasks Optimality Safety



Results



Further resources

Website: deep-ltl.github.io

arXiv: arxiv.org/abs/2410.04631

GitHub: mathiasj33/deep-ltl

💻 mathias-jackermeier.me

✉ mathias.jackermeier
      @cs.ox.ac.uk

      mathiasj33

      @m_jackermeier

https://deep-ltl.github.io
https://arxiv.org/abs/2410.04631
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