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X Difficult to formulate (?)

Well suited when correctness is crucial, e.g.
é ) .. .
safety-critical settings
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Example specification:

(—yellow U purple) A G (green = F blue)

“Go to the purple zone while avoiding the yellow region, and
always, if you visit green you eventually have to go to blue.”
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How can we train a multi-task policy to zero-shot
execute arbitrary LTL specifications?
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Any LTL specification can be converted to an equivalent (Blchi) automaton:
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Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy
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In a multi-task setting, we do not know the automaton beforehand
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Reach-avoid sequences
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Test-time policy execution
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Test-time policy execution
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Results

ZoneEnv LetterEnv

0.6 LTL2Action GCRL-LTL DeepLTL
‘3 o = 0.75+0.18 0.9410.05 1.00-+0.00
g g 2 0.79+0.10 0.9410.03 0.98..0.00
502 T ¥s 0414014 1.00-..00 1.00--0.00
3 3 ¢4 0.72+0.17 0.82+0.07 0.97 10.01
o0 = s 0.4410.26 1.00-9 00 1.00-9.00
o2 Nur%ger of st:tle.gs 1.41e7 o2 Nur?llger of st%elp?s 1'41e7 ¥6 0.609.20 0.85+0.03 0.92, .06
FlatWorld 2 pr 0.1440.15 0.85+0.05 0.9110.03
H ps 0.67 £0.26 0.89+0.04 0.96.0.04
0.4 g o 0.6940.22 0.87+0.02 0.90_0.03
0.3 N o0 0.66-10.19 0.85+0.02 0.91_0.02
0 P11 0.9310.07 0.89+0.01 0.98.0.01
o - P12 1.00_9.00 0.8240.41 1.00_9.00
' B P13 0.631+0.50 0.00+0.00 1.00_0.00
0.2 06 1.0 L4 S o 0.71+0.40 0.7340.41 0.98-0.01

Number of steps le7 =

Ours (DeepLTL) GCRL-LTL LTL2Action I ¥ 0.07:+0.02 0.730.03 0.8620.01

©16 0.56-+0.35 0.64+0.08 1.00-0.01




Further resources

Website: deep-Itl.github.io

arXiv: arxiv.org/abs/2410.04631

GitHub: mathiasj33/deep-Itl
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