DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications for Multi-Task RL

Mathias Jackermeier, Alessandro Abate

ICLR 2025, Singapore

Engineering and Physical Sciences Research Council

Formal specifications: Precise Easy to verify Explicit structure Difficult to formulate (?)

Well suited when correctness is crucial, e.g. safety-critical settings

Example specification:

(¬yellow U purple) \land G (green \Rightarrow F blue)

Example specification:

 $(\neg yellow \ U \ purple) \land G (green \Rightarrow F \ blue)$

"Go to the purple zone while avoiding the yellow region,

Example specification:

 $(\neg yellow \ U \ purple) \land G \ (green \Rightarrow F \ blue) \\ \blacksquare$

"Go to the purple zone while avoiding the yellow region, and

Example specification:

 $(\neg yellow \ U \ purple) \land G (green \Rightarrow F \ blue)$

"Go to the purple zone while avoiding the yellow region, and always,

Example specification:

$$(\neg yellow U purple) \land G (green \Rightarrow F blue)$$

"Go to the purple zone while avoiding the yellow region, and always, if you visit green you eventually have to go to blue."

Example specification:

```
(\neg yellow \ U \ purple) \land G (green \Rightarrow F \ blue)
```

"Go to the purple zone while avoiding the yellow region, and always, if you visit green you eventually have to go to blue."

Example specification:

 $(\neg$ yellow U purple) \land G (green \Rightarrow F blue)

"Go to the purple zone while avoiding the yellow region, and always, if you visit green you eventually have to go to blue."

How can we train a **multi-task** policy to **zero-shot** execute **arbitrary** LTL specifications?

From LTL specifications to automata

Any LTL specification can be converted to an equivalent (Büchi) **automaton**:

$$\pi \colon \mathcal{S} \times \mathcal{Q} \to \mathcal{\Delta}(\mathcal{A})$$

$$\pi\colon \mathcal{S} imes \mathcal{Q} o \mathcal{\Delta}(\mathcal{A})$$

$$\pi \colon \mathcal{S} \times \mathcal{Q} \to \mathcal{\Delta}(\mathcal{A})$$

In a multi-task setting, we do not know the automaton beforehand

In a multi-task setting, we do not know the automaton beforehand

In a multi-task setting, we do not know the automaton beforehand

What is a **general representation** of the automaton state that can be used to condition the policy?

In a multi-task setting, we do not know the automaton beforehand

What is a **general representation** of the automaton state that can be used to condition the policy?

cv execution

Discussion & Results

Discussion

Infinite-horizon tasks

Optimality

Safety

Results

		LTL2Action	GCRL-LTL	DeepLTL
LetterWorld	φ_1	$0.75_{\pm 0.18}$	$0.94_{\pm 0.05}$	$1.00_{\pm 0.00}$
	$arphi_2 \ arphi_3$	$0.41_{\pm 0.14}$	$1.00_{\pm 0.00}$	$1.00_{\pm 0.00}$
	$arphi_4 \ arphi_5$	$\begin{array}{c} 0.72_{\pm 0.17} \\ 0.44_{\pm 0.26} \end{array}$	$0.82_{\pm 0.07} \ 1.00_{\pm 0.00}$	$\begin{array}{c} \textbf{0.97}_{\pm 0.01} \\ \textbf{1.00}_{\pm 0.00} \end{array}$
ZoneEnv	$arphi_6$	$0.60_{\pm 0.20}$	$0.85_{\pm0.03}$	$0.92_{\pm 0.06}$
	φ_7	$0.14_{\pm 0.18}$	$0.85_{\pm0.05}$	$0.91_{\pm 0.03}$
	$arphi_8$	$0.67_{\pm 0.26}$	$0.89_{\pm 0.04}$	$0.96_{\pm 0.04}$
	$arphi_9$	$0.69_{\pm 0.22}$	$0.87_{\pm0.02}$	$0.90_{\pm 0.03}$
	$arphi_{10}$	$0.66_{\pm 0.19}$	$0.85_{\pm0.02}$	$0.91_{\pm0.02}$
	$arphi_{11}$	$0.93_{\pm 0.07}$	$0.89_{\pm0.01}$	$0.98_{\pm 0.01}$
FlatWorld	φ_{12}	$1.00_{\pm 0.00}$	$0.82_{\pm 0.41}$	$1.00_{\pm 0.00}$
	$arphi_{13}$	$0.63_{\pm 0.50}$	$0.00_{\pm 0.00}$	$1.00_{\pm 0.00}$
	φ_{14}	$0.71_{\pm 0.40}$	$0.73_{\pm0.41}$	$0.98_{\pm 0.01}$
	φ_{15}	$0.07_{\pm 0.02}$	$0.73_{\pm 0.03}$	$0.86_{\pm 0.01}$
	$arphi_{16}$	$0.56_{\pm0.35}$	$0.64_{\pm 0.08}$	$\boldsymbol{1.00}_{\pm 0.01}$

Further resources

Website: <u>deep-ltl.github.io</u>

arXiv: arxiv.org/abs/2410.04631

GitHub: mathiasj33/deep-ltl

💻 mathias-jackermeier.me

⊠ mathias.jackermeier @cs.ox.ac.uk

💭 mathiasj33

💟 @m_jackermeier