DeeplLTL: Learning to Efficiently Satisfy Complex
LTL Specifications for Multi-Task RL

Mathias Jackermeier, Alessandro Abate

ICLR 2025, Singapore

. Engineering and
COMPUTER Physical Smence:s
10):€:10):30) | SCIENCE Research Council

73 ICLR

Instruction-following RL agents

73 ICLR

Instruction-following RL agents

Instruction-following RL agents “5 ICLR

Q Natural language:
V4 Intuitive

Instruction g O O x Ambiguous
— X Difficult to assess

Instruction-following RL agents “5 ICLR

8 Formal specifications:

: L4 Precise
Instruction . o3 o) 4 Easy to verify
e "4 Explicit structure

X Difficult to formulate (?)

Instruction-following RL agents “5 ICLR

Formal specifications:

. \'4 Precise
Instruction . OO 74 Easy to verify
—_ 4 Explicit structure

X Difficult to formulate (?)

Well suited when correctness is crucial, e.g.
é) .. .
safety-critical settings

7 ICLR

Linear temporal logic (LTL)

Example specification:

(—yellow U purple) A G (green = F blue)

Linear temporal logic (LTL) “; ICLR

Example specification:

(—yellow U purple) A G (green = F blue)

“Go to the purple zone while avoiding the yellow region,

Linear temporal logic (LTL) “; ICLR

Example specification:

(—yellow U purple) A G (green = F blue)
H

“Go to the purple zone while avoiding the yellow region, and

Linear temporal logic (LTL) “; ICLR

Example specification:

(—yellow U purple) A G (green = F blue)
H

“Go to the purple zone while avoiding the yellow region, and
always,

Linear temporal logic (LTL) “; ICLR

Example specification:

(—yellow U purple) A G (green = F blue)

“Go to the purple zone while avoiding the yellow region, and
always, if you visit green you eventually have to go to blue.”

Linear temporal logic (LTL) “; ICLR

Example specification:

(—yellow U purple) A G (green = F blue)

“Go to the purple zone while avoiding the yellow region, and
always, if you visit green you eventually have to go to blue.”

Linear temporal logic (LTL) “; ICLR

Example specification:

(—yellow U purple) A G (green = F blue)

“Go to the purple zone while avoiding the yellow region, and
always, if you visit green you eventually have to go to blue.”

Temporall Infinite Safet
2 P y 2 2 y

("4 Compositional extended horizon constraints

D ICLR

How can we train a multi-task policy to zero-shot
execute arbitrary LTL specifications?

From LTL specifications to automata ‘\” ICLR

Any LTL specification can be converted to an equivalent (Blchi) automaton:

—blue —green

blue
start = 90 >

Accepting g:ie/

GFblue A GF green ey

D ICLR

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

r A

I —key —door T

start —>

'g' F (key A Fdoor)

D ICLR

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

r A

I ﬂkey —door

/D key 8 door 8
start = 4o —>

'g' F (key A F door)

Product MDP

D ICLR

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

s

~

P

ﬂkey —door
key 8 door 8
start = 4o —>
F (key A F door)

Product MDP

D ICLR

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

s

~

ﬂkey —door
key 8 door 8
start = 4o —>
F (key A F door)

Product MDP

D ICLR

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

s

~

—key —door T

8 key door
start —> qaq ——>

F (key A Fdoor)

Product MDP

D ICLR

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

s

~

—key —door T

8 key door
start —> qaq ——>

F (key A Fdoor)

D ICLR

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

r A

I —key —door T
=

0 8 key door
start —> qaq ——>

F (key A Fdoor)

73 ICLR

Product MDP

Keeping track of the automaton state allows us to learn a Markovian policy

TS x Q— A(A)

r A

i)
g —key —door T

@ key @ door
start »8—8—‘

F (key A Fdoor)

From single-task to multi-task ‘\” ICLR

In a multi-task setting, we do not know the automaton beforehand

—nkey —door

i
key door
' ' start > 4o ——>

73 ICLR

From single-task to multi-task

In a multi-task setting, we do not know the automaton beforehand

From single-task to multi-task ‘} ICLR

In a multi-task setting, we do not know the automaton beforehand

What is a general representation of the automaton state that can be used to
condition the policy?

From single-task to multi-task ‘} ICLR

In a multi-task setting, we do not know the automaton beforehand

What is a general representation of the automaton state that can be used to
condition the policy?

Reach-avoid sequences “5 ICLR

purple

green/y blue V yellow

s —> Q17 T
yellow Vv
purple

Reach-avoid sequences “5 ICLR

purple

green @ blue V yellow

s —> Q17 T
yellow Vv
purple

Reach-avoid sequences “5 ICLR

purple

green @ blue V yellow

s —> Q17 T
yellow Vv
purple

Reach-avoid sequences “5 ICLR

purple

green @ blue V yellow

- —> Q17 T
yellow Vv
purple

Reach-avoid sequences “5 ICLR

purple

green @ blue V yellow

- —> Q17 T
yellow \/\
purple

Reach-avoid sequences “5 ICLR

purple

green @ blue V yellow

- —> Q17 T
yellow \/\
purple

73 ICLR

Reach-avoid sequences

wr {0} {@0)
aoid: - {O@F {@}

Training a general policy

We use goal-conditioned RL to train a general policy:

: {©} {90}
2P | oo f@

Training a general policy

We use goal-conditioned RL to train a general policy:

: @ {00 |
2P | oo f@ / X

Training a general policy

We use goal-conditioned RL to train a general policy:

¢ o} {0@} ,
2p | @ @ / X

Training a general policy

We use goal-conditioned RL to train a general policy:

: @ © |
ep | @ 0 / X

Training a general policy

We use goal-conditioned RL to train a general policy:

73 ICLR

Model architecture

©f 100)
oo} o)

73 ICLR

Model architecture

Deep Sets T
@} {@0}
cet {0}

73 ICLR

Model architecture

X1)41
X2 Y2
| Xm_ | Ym_

Step 1 Step 2 L

Deep Sets T
@} {@0}
cet {0}

73 ICLR

Model architecture

[Xq | _)/1 |
X2 Y2 RNN
X X >
| Xm | Ym_

Step 1 Step 2 L

Deep Sets T
@} {@0}
cet {0}

73 ICLR

Model architecture

_X1] _)/1] 2]
X.2 y 2 RNN 2
. . >
| Xm _ | Vm_ 24
Deep Sets T
©f @0
oo} @

3 ICLR

Model architecture

[X1 | 1] 2 s,
2 2 RNN 2 .
; : g
- - Zy Sn
Deep Sets T
¢} {0d
ce} @

73 ICLR

Model architecture

_X1] _)/1] 2] _51-
X? y 2 RNN 2 s
) ; > :
SR ENE
\
Deep Sets T
{0} {eg
cet (@

73 ICLR

Model architecture

_X1] _)/1] 2] _51-
X? y 2 RNN 2 s
) ; > :
SR ENE
\
Deep Sets T
{0} {eg
cet (@

e IR Actlon

7 ICLR

Test-time policy execution

7 ICLR

Test-time policy execution

7 ICLR

Test-time policy execution

7 ICLR

Test-time policy execution

3 ICLR

Test-time policy execution

= argmax V" (s, o)

o)

D ICLR

Test-time policy execution

an~m(,o")

R
-qeep”
Py %

\\g— 0 = argmax V"(s,)

D ICLR

Test-time policy execution

an~m(,o")

(o
Py % |
\\g— 0" = argmax V(s,0)

D ICLR

Test-time policy execution

o =argmax V" (s, o)

23 ICLR

Discussion & Results

Discussion

-

R

NS

y

3 ICLR

o b

Infinite-horizon
tasks

Optimality

73 ICLR

Results

ZoneEnv LetterEnv

0.6 LTL2Action GCRL-LTL DeepLTL
‘3 o = 0.75+0.18 0.9410.05 1.00-+0.00
g g 2 0.79+0.10 0.9410.03 0.98..0.00
502 T ¥s 0414014 1.00-..00 1.00--0.00
3 3 ¢4 0.72+0.17 0.82+0.07 0.97 10.01
o0 = s 0.4410.26 1.00-9 00 1.00-9.00
o2 Nur%ger of st:tle.gs 1.41e7 o2 Nur?llger of st%elp?s 1'41e7 ¥6 0.609.20 0.85+0.03 0.92, .06
FlatWorld 2 pr 0.1440.15 0.85+0.05 0.9110.03
H ps 0.67 £0.26 0.89+0.04 0.96.0.04
0.4 g o 0.6940.22 0.87+0.02 0.90_0.03
0.3 N o0 0.66-10.19 0.85+0.02 0.91_0.02
0 P11 0.9310.07 0.89+0.01 0.98.0.01
o - P12 1.00_9.00 0.8240.41 1.00_9.00
' B P13 0.631+0.50 0.00+0.00 1.00_0.00
0.2 06 1.0 L4 S o 0.71+0.40 0.7340.41 0.98-0.01

Number of steps le7 =

Ours (DeepLTL) GCRL-LTL LTL2Action I ¥ 0.07:+0.02 0.730.03 0.8620.01

©16 0.56-+0.35 0.64+0.08 1.00-0.01

Further resources

Website: deep-Itl.github.io

arXiv: arxiv.org/abs/2410.04631

GitHub: mathiasj33/deep-Itl

Z3 ICLR

= mathias-jackermeier.me

mathias.jackermeier
@cs.ox.ac.uk

Yr, () mathiasj33

a @m_jackermeier

https://deep-ltl.github.io
https://arxiv.org/abs/2410.04631
https://github.com/mathiasj33/deep-ltl

